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EASTERN GREAT BASIN AND SNAKE RIVER DOWNWARP,
GEOLOGY AND PETROLEUM RESOURCES
By James A. Peterson

INTRODUCTION

The Great Basin is that part of the Basin and Range province which
comprises mainly the State of Nevada, western Utah west of the Wasatch
Range, and a small part of southeastern Idaho, southeastern Oregon, and
eastern California (Hunt, 1979). The eastern Great Basin province of this
report includes eastern Nevada, western Utah west of the Wasatch
Mountains,and southeastern Idaho west of the thrust belt and south of the
Snake River Plain (fig. 1). The western boundary of the province is the
117° Vest meridian; the eastern boundary is the eastern edge of the thrust
belt in Utah and the Bannock thrust in southeastern Idaho (fig. 1). Much
of this region is greater than 5,000 ft (1,500 m) in elevation, except for
northern Utah (Bonneville basin) and southernmost Nevada ("Las Vegas
basin"). Several mountain ranges within the area rise to above 8,000 ft
(2,400 m), particularly in east-central Nevada.

The geology of the region is very complex and involves a great
diversity of sedimentary facies, major episodes of orogenic and igneous
activity, and extensive block faulting (Stewart, 1980; Miller and Howard,
1983). The complex structural features include: 1) a middle to late
Paleozoic thrust belt (Antler orogenic belt) extending across south-
central and northeastern Nevada into south-central Idaho; 2) low- and
high-angle late Tertiary extensional faults with Basin and Range type
faulted deep graben valleys bounded by elongate high mountain range horst
blocks; 3) metamorphic core complexes; 4) Tertiary, Cretaceous, and
Jurassic intrusives; and 5) extensive Tertiary extrusive volcanics,
particularly widespread in central and southern Nevada and south-central
Idaho (figs. 1-5). The region is one of exceptionally high heat flow in
places with many hot springs throughout the area (fig. 3). Metallic and
non-metallic ore deposits are present throughout most of the region (fig.
2).

TECTONIC SUMMARY

The tectonic development of eastern Nevada can be briefly summarized
as a series of several regional events (Stewart, 1980).

1. Precambrian.--tectonic, metamorphic, and intrusive activity that
produced the crystalline basement in the southern part of the State, and
the late Precambrian continental margin in western Nevada.

2. Early and middle Paleozoic.--probable minor tectonic activity in
early Paleozoic time, followed by development of the Antler orogeny in
Late Devonian and Early Mississippian time, with folding, faulting, and
eastward thrusting of early Paleozoic rocks.

3. Late Paleozoic and Early Triassic.--continued tectonic development
and uplift of the Antler orogenic belt (fig. 4) and associated foreland
basins filled with coarse debris from the Antler highland (Antler flysch);
Late Permian and Early Triassic development of the Sonoma orogeny to the
west of the earlier Antler orogenic belt.

4. Mesozoic.--mainly compressional folding and thrusting with
regional uplift in eastern Nevada accompanied by development of
metamorphic core complexes (figs. 2, 3), low-angle ("denudation") faults,
age uncertain but may be as old as Jurassic or as young as Tertiary;
folding and thrusting in northeastern Nevada which may be of Late Jurassic
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Unconformity Play

This play is based on the presence of an unconformity seal
(unconformity "A") and traps at the base of the Pliocene-Pleistocene
valley £ill in most of the major eastern Basin and Range valleys. In most
valleys, unconformity "A" commonly overlies volcanics, mainly ignimbrites
and flows, of late Oligocene to Pliocene age. However, depending on
pre-valley fill structures, the valley-fill deposits may overlie
lacustrine clastic, oil shale, or carbonate rocks of early Tertiary or
Cretaceous age or Paleozoic rocks ranging in age from late Paleozoic to as
old as Cambrian (figs. 23-26). Because of late Tertiary development of
basin and range structure, much of the previously deposited lake beds and
volcanics, as well as the underlying Paleozoic rocks, have been removed by
erosion in the mountain ranges but are more extensively preserved in many
of the valleys, where they may be overlain by several thousand feet of
valley-fill. The Shell, Eagle Springs prospect was based on the belief
that thick Paleozoic marine beds of good source and reservoir character
would be present beneath the valley fill where an efficient seal and trap
would be more likely to be present than in the uplifted blocks. The
discovery well was drilled on a small seismic closure beneath about 6,000
ft (1,800 m) of valley fill. The well did penetrate a substantial
oil-stained section of Paleozoic rocks with potential reservoir and source
rock quality, as prognosed. The surprise was that these rocks were
overlain by Tertiary lacustrine rocks, which in turn were overlain by the
main reservoir section in the discovery well, about 800 ft (250 m) of
porous and permeable Tertiary ignimbrite. Below the volcanics, the well
penetrated in order: 1) approximately 500 ft (150 m) of oil-stained early
Tertiary lacustrine shale, carbonate,and sandstone; 2) approximately 900
ft (175 m) of Pennsylvanian Ely Limestone; 3) approximately 600 ft (180 m)
of Mississippian dark-gray shale and oil-stained sandstone (Chainman
Shale); and 4) after crossing a probable major fault, approximately 1,000
ft (300 m) of Cambrian silty carbonate rocks. Below 10,300 ft (3,100 m),
the well bottomed in a Tertiary granodiorite stock. A 300-ft (90-m)
section of porous dolomite with gas shows, encountered in the middle of
the valley £fill at the discovery well (fig. 24) probably is rock slide
debris loosened from the growing Grant Range fault scarp east of the well
during Pliocene valley and range growth.

The Eagle Springs field probably is related to updip truncation of
volcanic, Tertiary lacustrine, and Paleozoic beds on a buried hill fault
block beneath the valley-£fill unconformity near the valley edge next to
the major Grant Range basin and range fault. The Tertiary igneous stock
at TD could have affected growth of the structure. Geologic complexity of
the structure is demonstrated by the fact that Tertiary volcanics and the
Sheep Pass Formation rocks were absent in the first development well,
which produced from fractured Permian or Pennsylvanian limestone beneath
the valley-£fill unconformity. The second development well encountered
volcanics below the valley-fill and drilled several hundred feet of these
rocks before abandonment. Subsequent development drilling between 1954
and 1968 resulted in nine dry holes and fourteen productive wells in the
field, three producing from Oligocene volcanics, nine from the early
Tertiary lacustrine carbonate section, one in both volcanics and Tertiary
carbonates, and one in the Pennsylvanian Ely Limestone (Bortz and Murray,
1979).
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Play boundaries.--The unconformity play includes an area of
approximately 35,000 mi? (90,000 km?) adjacent to and extending east of
the Antler orogenic belt (fig. 1). Within this area, adequate source
rocks are present in the Late Cretaceous (?)-early Tertiary lacustrine and
fluvial facies and the upper Paleozoic marine carbonate-clastic sequence,
and there are effective seals in the valley-fill. The play area includes
part of the region where conodont alteration index work indicates that
upper Paleozoic rocks may not have been subjected to excessive thermal
effects (fig. 3) (Sandberg, 1983; Sandberg and Gutschick, 1977).

Reservoirs.--Fractured Paleozoic reservoirs beneath the unconformity
and lacustrine sandstone, siltstone, and carbonate beds of the Sheep Pass,
Elko and equivalent section, and overlying volcanics. Reservoirs are
enhanced by fracturing, but matrix porosity in the carbonate and sandstone
beds can be high. Good porosity and permeability may also be present
locally in Tertiary volcanic rocks.

Source rocks.--Lacustrine oil shale or bituminous lacustrine shale
and carbonate, and middle to upper Paleozoic marine organic-rich shale in
unconformity or fracture communication with overlying reservoirs. The
Tertiary potential source rocks are reported as immature in places, but in
areas of higher heat flow, they probably reach maturity. Analysis of oil
at Eagle Springs indicated a possible mixture of Tertiary and Paleozoic
oils. 0il at the Grant Canyon, Trap Spring, Bacon Flat, and Blackburn
fields (figs. 22-28) appears to be related to upper Paleozoic source rocks
(Poole and Claypool, 1984; Veal and others, 1988).

Traps and seals.--Folds, faulted folds, and buried hills beneath
valley fill, sealed by valley-fill or volcanic beds or against faults.

Generation, timing, and migration.--Devonian and Mississippian source
rocks probably reached the oil generation stage by Permian or Triassic
time in most of the Great Basin region, and probably earlier in parts of
the area. Stratigraphic and structural traps probably were continually
forming after Devonian time, related to continuing growth of the Antler
orogenic belt and related foreland tectonics. Regional uplift and erosion
of the eastern Great Basin region during the Mesozoic probably destroyed
many of the traps, but may have enhanced others. Much of the Paleozoic
0oil was remigrated or lost at this time. Development of lacustrine basins
in late Mesozoic and early Tertiary time sealed the Paleozoic beds in
parts of the area and at the same time deposited the Tertiary reservoir
and potential source rock section. Late Tertiary development of the basin
and range structural complex further destroyed many remnant Paleozoic
traps and some Tertiary traps, but at the same time provided communication
between Paleozoic and Tertiary reservoirs in places. Regional volcanism
provided additional seals in some cases, and locally higher heat flow may
have matured Tertiary source beds in some valleys. Chamberlain (1986)
recently proposed that the petroleum accumulations could be related to an
as-yet undocumented north-south Mesozoic ("Sevier”) thrust belt passing
through both Railroad and Pine Valleys, which contain the only known o0il
fields. Some evidence for possible early Mesozoic thrust faulting in
northeastern Nevada has been presented (Ketner, 1984, 1987; Ketner and
Smith, 1974, 1982).

Exploration status.--This play is moderately well explored in
Railroad Valley but is lightly or relatively unexplored in the remainder
of the region. The existing fields are relatively small; the original
field, Eagle Springs, is approximately 5 MMBO (table 1). The 1983 Grant
Canyon discovery in railroad Valley (figs. 22, 25-29) producing from an
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intensely fractured Devonian (Guilmette Formation) dolomite reservoir,
reportedly is still maintaining a near 6,000 B/D rate. This field, as
wvell as Trap Spring, is considerably larger than Eagle Springs. Economics
of most of the existing fields is somewhat questionable at this time,
considering remoteness of the area, high transportation costs,
requirements of good quality expensive seismic work, relatively high
drilling costs, complexity of the geology, and difficulties in prediction
of confirmation drilling. Lands are mostly Federal.

Cumulative production from existing fields.--Approximately 21 MMBO
(2/88).

Estimated ultimate recovery from existing fields.--Approximately
40-60 MMBO (Table 1).

USGS mean estimate of undiscovered recoverable petroleum resources.--—
220 MMBO; 102 BCF gas (table 2).

Total area of play.--Approximately 35,000 mi? (90,000 km?).

Area of Federal lands.--30,000 mi? (78,000 km?).

Upper Paleozoic Play

Play boundaries.--The upper Paleozoic play covers an area of
approximately 55,000 mi? (135,000 km2?) in central and east-central Nevada
and west-central Utah. Within this area, upper Paleozoic rocks appear not
to have been buried to excessive depths (figs. 1, 19). The play includes
much of the area designated as the "cold spot" by Sandberg (1983) and
Sandberg and Gutschick (1977). The play is defined geologically as an
intra-upper Paleozoic play where reservoirs may be confined by interbedded
shaly seals independent of the Tertiary unconformity trapping mechanism.
This play could be divided into numerous sub-plays, both areally and
stratigraphically. The rocks are almost entirely marine and contain good
potential reservoir and source rocks in most of the stratigraphic section
(fig. 6). However, these rocks are exposed or removed by erosion in almost
all of the basin and range uplifts, have been subjected to deep burial,
strong tectonism, and high thermal effects in much of the area (figs.
7-10, 19). Probably much or most of the early petroleum accumulations
have been destroyed or remigrated as a result of Mesozoic and Tertiary
tectonic activity, or high thermal effects. Excessive burial depths,
however, have not affected upper Paleozoic rocks in large parts of the
region (figs. 7-10, 16-20), and adequate seals should be present in most
valleys. Lack of evaporites as an effective seal is an important
deterrent.

Reservoirs.—-Good potential reservoirs are present in porous dolomite
and dolomitized limestones in all parts of the section, including the
Devonian Simonson, Guilmette, and Jefferson Formations; the Mississippian
Joana Limestone, Monte Cristo, and Madison Formations; the Pennsylvanian
Ely, Bird Spring, and Callville Formations; and the Permian Kaibab,
Arcturus, and Park City Formations. Porous marine quartzose sandstones
are present in the Mississippian-Pennsylvanian Scotty Wash (Illipah)
sandstone and the Diamond Peak sandstone and conglomerate beds, and in the
Permian Diamond Creek and Riepe Spring sandstones and equivalents. All
reservoirs are probably greatly enhanced by fracturing in most of the
area.

Source rocks.--Black to dark-gray, organic-rich shales are
interbedded with carbonates and sandstones in almost all parts of the
region (figs. 7-10). Major units of good source rock quality are: 1)
the Upper Devonian-Lower Mississippian Pilot Shale; 2) the Mississippian
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Chainman Shale and equivalents, which intertongue with the Diamond Peak
and Scotty Wash sandstones in Nevada (figs. 6-10, 15); and 3) the
organic-rich, phosphatic Permian Meade Peak Shale Member of the Phosphoria
Formation of northern Utah, southeastern Idaho and northeastern Nevada.
Marine argillaceous limestone and calcareous shale of Pennsylvanian and
Permian age are of potential source rock quality in the Antler foredeep
region of the Butte and Bird Spring basins (figs. 8, 16, 17). The thick
Pennsylvanian-Permian Oquirrh Formation also may contain potential source
rocks in northern Utah and southern Idaho. Source rocks probably are
thermally altered to the dry gas or post-maturity stage in much of the
region, although there are large areas where the rocks may still be in the
0il window.

Traps and seals.--Folds, most of which are faulted, and fault blocks
sealed by upper Paleozoic shales or fault zones, are potential traps.
Sandstone stratigraphic traps probably are common in the belt of facies
change between the Diamond Peak Sandstone and Chainman Shale in central to
eastern Nevada (figs. 7-10, 15, 16), northwestern Utah and south-central
Idaho, but would be difficult to explore for. Porosity change and organic
carbonate buildup traps should be present, but may be poorly sealed and
subject to destruction by tectonism.

Generation, timing, and migration.--These factors are similar to
those involved with the unconformity play. Mesozoic and Tertiary
tectonism generally occurred after generation and trapping had initially
taken place.

Exploration status.-~-This play is lightly explored in Railroad Valley
and is unexplored to lightly explored in the remainder of the region.
Lands are mostly Federal. No accumulations confirmed as intra-Paleozoic
traps and seals have yet been discovered.

USGS mean estimate of undiscovered recoverable petroleum resources.--—
49 MMBO, 67 BCF gas.

Total area of play.--Approximately 55,000 mi2 (135,000 km?).

Area of Federal lands.--Approximately 50,000 mi? (78,000 km?).

Pre-Devonian Play

This play is of low potential, but the rocks involved may have
originally contained accumulations formed during early generation and
migration, but since have been destroyed by subsequent tectonic or thermal
effects. 1In most of the region, these rocks have been buried beyond the
post-mature stage, have been subjected to severe structural, igneous, and
other thermal activity during several orogenic stages, and are exposed in
many of the mountain ranges.

Reservoirs.-—-Porous dolomite or dolomitized limestones are present in
the Ordovician Pogonip Group, and the Fish Haven, Hansen Creek, and Ely
Springs Dolomites, and in the Silurian Laketown and Lone Mountain
Dolomites. The thick Middle Ordovician Eureka or Swan Peak Quartzites and
the Cambrian Tapeats, Tintic, Prospect Mountain, and Brigham Quartzites
generally are highly fractured and potentially could provide fractured
reservoirs in rare occurrences.

Source rocks.--In much of the region, dark marine shales are
interbedded with Ordovician carbonate rocks. However, these beds have
been buried to depths of 20,000 ft (6,000 m) or more in most of the Great
Basin regions (figs. 7-10, 12, 19) and have been subjected to severe late
Paleozoic, Mesozoic, and Tertiary tectonic and thermal effects.
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Traps and seals.--Upper Paleozoic shale beds are potential seals on
fractured and faulted structures.

Generation, timing, and migration.--Hydrocarbons probably were
generated and trapped as early as late Paleozoic time in much of the
region but have been largely destroyed by subsequent tectonism, igneous
activity, or by burial to excessive thermal depths.

Depth range.--1,000 to 20,000 ft (300 to 6,000 m).

Exploration status.--This play is highly speculative with low
potential. Lands are mostly Federal.

Eastern Part of Eastern Great Basin Province

The eastern part of the eastern Great Basin province in Utah and
southeastern Idaho is considered to have very doubtful potential for
significant hydrocarbon resources. The region contains organic-rich rocks
of Devonian, Mississippian, Pennsylvanian, and Permian ages, but most of
the area is affected by several negative factors: 1) deep burial; 2)
excessive thermal effects and metamorphism; 3) severe tectonism, including
thrusting, vertical faulting and fracturing and widespread exposure of
Paleozoic rocks extending into middle and late Tertiary time; 4) absence
of effective seals to offset the adverse tectonic effects; 5) most of the
valleys do not contain the thick valley-£fill as is present in eastern
Nevada; and 6) the post-Silurian section has been removed by regional
erosion in much of the potentially favorable area.

Summary

The eastern Great Basin is a high-risk petroleum province, lightly
explored in most areas. A number of geologic, economic, and drilling
problems are involved in conducting an efficient exploration program, and
the cost of exploration is abnormally high in many areas. Evaluation of
the region as a petroleum province is subject to higher than normal
uncertainties at this time because of insufficient subsurface data in most
valleys. Personal assessments range from pessimistic to highly optimistic
with giant fields and several billion barrels of o0il. Current USGS mean
estimates of undiscovered petroleum resources are 311.0 MMB oil and 202.0
BCF gas (table 2).

The main geologic elements can be summarized as follows:

Positive factors

1. Large volume of mainly marine Paleozoic stratigraphic section,
with many porous or formerly porous potential reservoir formations.

2. Intense tectonic fracturing in many areas, with potential
fractured reservoir possibilities good, particularly in carbonate rocks.
3. Large volume of relatively organic-~rich Paleozoic rocks of
potential or formerly potential source rock character interbedded with or
closely associated with reservoir rock facies. These source rocks are
over-mature in much of the area, but windows of less mature and perhaps

under mature rocks should be present.

4. Relatively widespread younger lacustrine section with good
organic-rich beds in places and porous or fracture-prone carbonate beds.
These rocks are immature in parts of the region but in areas of deeper
burial or higher heat flow are mature.

5. Several regional or semi-regional shaly potential seals and an
efficient widespread seal at the base of the valley fill.
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Table 2.--Statistical estimates of undiscovered petroleum resources

Fields greater than 1 MMBO or 6 BCF gas:

Play Mean F95 F50 F5
Tertiary 220.0 MMBO 66.0 MMBO 182.0 MMBO 503.0 MMBO
unconformity 102.0 BCF 20.0 BCF 75.0 BCF 276.0 BCF
Late 49.0 MMBO 14.0 MMBO 40.0 MMBO 112.0 MMBO
Paleozoic 67.0 BCF 10.0 BCF 45.0 BCF 194.0 BCF

Small fields (less than 1 MMBO or 6 BCF gas):
0il 42.0 MMBO 31.0 MMBO 41.0 MMBO 54.0 MMBO
Gas 33.0 BCF 22.0 BCF 32.0 BCF 45.0 BCF
Total for province:
0il 311.0 MMBO 111.0 MMBO 263.0 MMBO 669.0 MMBO
Gas 202.0 BCF 52.0 BCF 152.0 BCF 515.0 BCF
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Negative factors

1. Rigorous tectonic history resulting in excessive disturbance of
the Paleozoic section, fracturing, uplift, faulting, and exposure, with
consequent adverse effect on regional shaly seals and pre-middle Tertiary
petroleum accumulations.

2. Rigorous thermal history in much of the region with resultant
over-cooking of potential source rocks, and relatively high degree of
metamorphism in large parts of the region.

3. Over-maturity of Paleozoic source rocks in much of the area
because of excessive burial depths, particularly in the early and middle
Paleozoic section.

4. Probable immaturity of much of the younger lacustrine section
because of insufficient burial depth.

5. Absence of evaporite seals.

SNAKE RIVER DOWNWARP

The Snake River downwarp in southern Idaho is a large arcuate
structural graben and downwarp 350-400 miles (565-650 km) long and 50-75
miles (80-102)km) wide extending from southeastern Oregon to Yellowstone
Park, northwestern Wyoming (figs. 1, 21). 1Initial rifting may have begun
in Miocene time, accompanied by downwarping, left-lateral displacement,
and extrusion of volcanics (Warner, 1977). Prior to rifting, the area of
southwestern Idaho and southeastern Oregon may have been occupied by a
depositional basin where 5,000 ft (1,500 m) or more of early Tertiary
deposits formed (Warner, 1980). By early Miocene time, the basin was
occupied by a large lake (Lake Bruneau of Miller and Smith, 1967) where
5,000 to 7,000 ft (1,500 to 2,100 m) of lacustrine sediments were
deposited (Sucker Creek Formation). Total thickness of Tertiary deposits
in this region may have been 30,000 ft (9,000 m) or more (fig. 21). The
Sucker Creek is exposed at several localities in southwestern Idaho and
southeastern Oregon, and approximately 5,000 ft (1,500 m) of the section
has been penetrated in several wells (fig. 29). The formation consists of
lignitic shale, clay, sandstone, diatomite, ash, tuff, oolitic limestone,
and some lava flows. Numerous gas and some oil shows have been reported
from the section in shallow water wells and wells drilled for petroleum
(Warner, 1977, 1980).

According to Warner (1977), rifting and graben growth in Pliocene
time occurred on the north side of the Lake Bruneau basin, marking the
initiation of the Snake River downwarp. During this time, a second lake
formed (Lake Idaho), which occupied the approximate position of the
present-day Snake River Plain. As much as 9,000 ft (2,750 m) of
Pliocene-Pleistocene lacustrine clay, sandstone, conglomerate. algal and
oolitic limestone, ash, tuff, and basalt were deposited (Poison Creek,
Chalk Hills, and Glenn’s Ferry Formations; figs. 29, 30). Thickness of
both the Idaho Lake and the Bruneau Lake sections is greatest in the
wvestern part of the downwarp.

The Idaho Lake beds are overlain by the Snake River Basalts of
Pleistocene and Holocene age, which are exposed at the surface over much
of the Snake River Plain (Malde and Powers, 1962).

Reservoirs.--Porous sandstones, commonly mixed with volcanics, are
present in several parts of the Tertiary section and in many cases
probably intertongue with lacustrine beds of the Sucker Creek or Chalk
Hills Formations. Oolitic and algal limestone beds in the Sucker Creek
and Chalk Hills Formations also are potential reservoir rocks.

44



b b_
so0d |7 P EXPLANATION
< A .
S B
3 g
S -3 s s
5000 Lm H H [oi— Basalt af Snoke River Group
& 5 « % _
2 3 /533 Qg |
cnu nop / g .‘./ [ e

Block Mesa Grovel

®
froereeprrrr—,
S RSN
£, fabs.iaee )
m Bruneou Formatian
a Qbs, sedimentory depasits
Qob, bascitic love flows
-3 Tuona Gravel
8 8
. ©.
. .
s000' — H . ' £ e ;
X [ H 2 .
m 3 I Glenns Ferry Formation
=
c_TIb g 2 . :
4000 - 5 2 ¢ Teh
K 77x Cholk Hiils @ © OR—
o Chalk Hills Formation
3000 — A Qbs °
<
©
gt
2000 s
c ¢
€000 —
' - « F3 s -
H H 3 H
s - ~ L Xl
S @ G £
- - . s
K] a ® ~
3 2 &
(7Y v o

Granite of ldaho bothotith

:

TERTIARY

o 2 e
CRETACEOUS

QUATERNARY

45

QTg

o 10 20 MILES
! j
APPROXIMATE HORIZONTAL SCALE
VERTICAL SCALE EXAGGERATED APPROXIMATELY ISX

(Malde and Powers, po,owv

Figure 30.--Generalized cross-sections across Snake River downwarp.
Lines of cross-sections shown on fig. 1.



Source rocks.--According to Warner (1977, 1980), organic-rich shales
of considerable thickness and source rock characteristics are present in
the Sucker Creek Formation.

Traps and seals.--Fault block and fold structures and stratigraphic
traps are probably present in the subsurface but may be difficult to map.
According to Warner (1977), the major surface structures in the Snake
River Plain have not yet been drilled. Clay, ash, and tuff beds
throughout the stratigraphic section should provide numerous seals.

Exploration status.--The Snake River downwarp province is difficult
to assess because of sparsity of subsurface information. Five or six deep
exploratory wells have been drilled without success but with gas and some
oil shows reported (Warner, 1977, 1980). The province is considered as
high risk and probably gas prone. Temperature gradients are probably high
in much of the region because of extensive late Mesozoic to Holocene
igneous and thermal activity. Paleozoic and Mesozoic marine rocks are
probably present beneath the Tertiary section in much of the area.
However, the older rocks have been very deeply buried in most of the area
and subjected to tectonic, igneous, and thermal excesses over a long
period of time. The probably remote possibility of petroleum
accumulations in these rocks beneath the graben fill, somewhat similar to
those known in the eastern Great Basin province, deserves some
consideration. The assessments made at this time are considered as highly
tentative.

USGS mean estimate of undiscovered recoverable petroleum resources.-—-
0il, too low to estimate; gas, 40 BCF.

Total area of play.--25,000 mi? (65,000 km?).

Area of Federal lands.-- 6,500 mi2 (17,000 km?).
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Figure

Figure

Figure

Figure

1l.--Index map of eastern Great Basin, showing outcrop areas,
assessment boundary, play boundaries, main thrust faults, and lines
of cross-sections of figures 7-10 and 30. Cities shown: Idaho -
(S) Salmon, (P) Pocatello; Nevada - (W) Winnemucca, (EK) Elko, (A)
Austin, (E) Ely, (T) Tonopah, (LV) Las Vegas; Utah - (SLC) Salt
Lake City, (CC) Cedar City.

2.--Map showing metamorphic core complexes, ore deposits,

oil and gas fields, and oil or gas indications. Modified after
Bortz (1983). 0il fields shown: (1) North Willow Creek, (2)
Blackburn, (3) Eagle Springs, (4) Trap Spring, (5) Kate Spring, (6)
Grant Canyon, (7) West Rozel.

3.--Map showing metamorphic core complexes, high heat flow
areas, and thermal springs, eastern Great Basin.

4.--Estimated original sedimentary cover of Paleozoic and
Mesozoic rocks, eastern Great Basin.

S.--Estimated original thickness of Paleozoic rocks, without
Lower Cambrian, eastern Great Basin. Post-Silurian
rocks are absent by post-Permian erosion on Sevier Uplift.

6.--Correlation chart of western Utah and eastern Nevada.

7.--Southwest-northeast stratigraphic cross-section A-A’,
Vinnemuca, Nevada to western Wyoming. Datum, top of Permian.
Line of cross-section shown on fig. 1.

8.--Vest-east stratigraphic cross-section A-A", VWinnemuca,
Nevada to southwestern Utah. Datum, top of Permian.
Line of cross-section shown on fig. 1.

9.--Northwest-southeast stratigraphic cross-section B-B/,
Austin, Nevada to southwestern Utah. Datum, top of Permian. Line
of cross-section shown on fig. 1.

10.--West-east cross-section C-C’, Yucca mountain, Nevada to
southwestern Utah. Datum, top of Permian. Line of
cross-section shown on fig. 1.

11.--Approximate thickness of Middle and Upper Cambrian rocks,
partly restored, eastern Great Basin.

12.--Approximate thickness and general facies of Ordovician

rocks, partly restored, eastern Great Basin.

13.-—-Approximate thickness of Silurian rocks, partly restored,
eastern Great Basin.
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Figure

Figure
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14.--Approximate thickness and general facies of Devonian
rocks, partly restored, eastern Great Basin.

15.--Approximate thickness and general facies, Mississippian
rocks, partly restored, eastern Great Basin.

16.--Approximate thickness and general facies, Pennsylvanian
rocks, partly restored, eastern Great Basin.

17.--Approximate thickness and general facies, Permian
rocks, partly restored, eastern Great Basin.

18.--Estimated original thickness of Triassic rocks, eastern Great
Basin. '

19.--Estimated original thickness of Mississippian through Triassic
rocks, and distribution of Mississippian and Devonian potential
source rock facies, eastern Great Basin. Map approximates original
depth of burial of source rock section prior to Mesozoic uplift of
region.

20.--Approximate thickness of Jurassic rocks, eastern Great
Basin, and western Rocky Mountain shelf.

21.--Map showing main Tertiary basins, eastern Great Basin.

22.--Generalized geologic map of Railroad Valley, showing well
control, oil fields, and lines of cross-sections of figs. 23-26.

23.--Seismic cross-section, Railroad Valley, approximately
along line X-X' of fig. 22.

24.--Structural-stratigraphic west-east cross-section X-X’,
through Trap Spring and Eagle Spring oil fields. Datum, mean sea
level. Line of cross-section shown on fig. 22.

25.-~Structural-stratigraphic west-east cross-section Y-Y',
through Grant Canyon oil field. Datum, mean sea level. Line of
cross-section shown on fig. 22.

26.--Structural-stratigraphic north-south cross-section Z-27,
through Eagle Springs and other oil fields on east side of Railroad
Valley. Datum, mean sea level. Line of cross-section shown on
fig. 22.

27 .--General structure in Railroad Valley, temperature gradient

map, and structural map of Eagle Springs oil field on unconformity
IIA" .
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Figure 28.--0il field and anomaly map of Railroad Valley, structural
maps and cross-section of Grant Canyon Field.

Figure 29.--Structural-stratigraphic west-east cross-section, Snake
River downwarp. Datum, mean sea level. Line of cross-section
shown on fig. 1.

Figure 30.--Generalized cross-sections across Snake River downwarp.
Lines of cross-sections shown on fig. 1.
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